
A Taxonomy of Approaches for
Integrating Attack Awareness
in Applications
Tolga Ünlü,
Dr. Lynsay Shepherd,
Dr. Natalie Coull,
Colin McLean

Introduction - Tolga Ünlü

● 1. Year PhD Student @ Abertay University, Scotland
Supervisors: Dr. Lynsay Shepherd, Dr. Natalie Coull, Colin McLean

● PhD Research Project:
Investigating Attack Awareness within Web Applications

● Research Interests:
Application Security, Usable Security for Developers,
Deception Technology

Agenda
● Problem Statement
● Attack Aware Applications
● Integration Approaches

- Developer-Driven
- Agent-Driven

● Discussion
● Conclusion & Future Work

The Security Blind Spots of Applications
Applications are often built without a means of observing and reacting to
security events as they occur. [1][2]

This has the following consequences for applications that are blind towards
security events:

● Attackers probing as they wish → Finding exploitable vulnerabilities
● In Production: No measure of effectivity of security controls
● In Production: No measure of validity of the threat model
● Incident Response: Missing forensic evidence

Attack-aware applications detect and respond to attacker activities in real-time
through embedded detectors [3] or detection points [1].

Detectors: Security controls that check for indicators of attacker activity.

Attack-Aware Applications

if(attack_indicator){
log(“Attacker activity detected!”);
respond();

}

Attack-Aware Applications
The application context can be utilized to define a set of observable attack
indicators for application-level intrusion detection [4].

In the current context:
● What actions are possible?
● Which values can a user provide?
● What is the expected exec. order of

actions?
● Should this action be executed at all?
● Which user roles are required for the

actions?
● ...

Determine and Monitor
Security Invariants

“X must always be true/false”

Approaches for Attack Awareness Integration
Guidance for researchers and developers to determine the appropriate
solution based on their technical and usability requirements

Developer-Driven Integration
The integration of attack awareness is done manually by the developers of an
application

Manual Integration
Detectors are directly implemented
in the application code

Aspect-Oriented Programming
Detectors are implemented as
“aspects”
→ Run aspect before/after function
of interest @ runtime

+ Utilization of Application Expertise
 and Frameworks
+ Business Logic Attack/Probing
 Detection
+ Usable Security Control Format

- Additional Task for Developers
- Security Expertise Required for
 Certain Attacks (e.g. Injection Attacks)
- Manual / Limited Automation

Agent-Driven Integration
The integration of attack awareness is done automatically by a software agent
on behalf of the developer

Runtime Environment
Instrumentation
Software agent is part of the runtime
environment → Affects all running
applications

Binary Instrumentation
Software agent injects detectors into
an applications binary code

+ Low Setup Cost (Plug & Play)
+ Automatic Injection Attack Detection
+ No Code Modification Required

- Inadequate Detection Techniques
- Platform/Technology Specific
- Inadequate in Certain Environments

Discussion
Detectors for business logic attacks and probing behavior need to be manually
implemented due to their custom nature.

→ Detecting a few distinct attacker probes could be sufficient to mitigate further
 attacks

Detectors for these:

● Are a few lines of code at most (including response logic)
● Don’t introduce significant complexity
● Are performant as they execute only when attackers run into them

But requires manual development and is an additional task on top of others. [5]

Conclusion & Future Research
Attack awareness can be integrated in applications using a developer-driven or
agent-driven approach.

Further research will focus on reducing the integration effort and aligning the
integration with common practices.

Utilizing Application Frameworks and their Components
→ Form the Basis of many Applications
→ Reusable Components for Common Practices (e.g. Integrating Attack Awareness
 via Dependency Injection [6])
→ Mitigations within the Framework increase Applications Security [7]
→ Frictionless for Developers

Thank you!
Contact, Feedback, Collaboration:

tolgadevsec.github.io

https://tolgadevsec.github.io

References
[1] C. Watson, M. Coates, J. Melton, and D. Groves. Creating Attack-Aware Software Applications with Real-Time Defenses.
24:14–18, 2011.

[2] A10:2017-Insufficient Monitoring and Logging | OWASP, 2017.
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A10-Insufficient_Logging%252526Monit
oring

[3] F. Kerschbaum, E. H. Spafford, and D. Zamboni. Using Internal Sensors and Embedded Detectors for Intrusion
Detection. Journal of Computer Security, 10(1-2):23–70, 2002.

[4] R. Sielken and A. Jones. Application Intrusion Detection Systems: The Next Step. ACM Transactions on Information and
System Security, 1999.

[5] C. Hall, L. Shepherd, and N. Coull. BlackWatch: Increasing Attack Awareness within Web Applications. Future Internet,
11(2):44, 2019.

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A10-Insufficient_Logging%252526Monitoring
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A10-Insufficient_Logging%252526Monitoring

References
[6] W. Kim, C. S. Moon, S. Chung, T. Escrig, and B. Endicott-Popovsky. Scalable and Reusable Attack Aware Software. In
2012 ASE/IEEE International Conference on BioMedical Computing (BioMedCom), pages 101–104. IEEE, 2012

[7] K. Peguero, N. Zhang, and X. Cheng. An Empirical Study of the Framework Impact on the Security of JavaScript Web
Applications. In Companion Proceedings of the The Web Conference 2018, pages 753–758, 2018

